

Tetmhedron Letters, Vol. 35. No. 48. pp. 8931-8934. 1994 Elsevier Science Ltd Rimed in Great Britain 0040-4039/94 \$7.00+0.00

0040-4039(94)01957-6

Selective C-2 and C-4 Deacylation and Acylation of Taxol: The First Synthesis of a C-4 Substituted Tax01 Aualogue

Gunda I. Georg,* Syed M. Ali, Thomas C. Boge, Apurba Datta and Lise Falborg

Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045

Richard H. Himes

Department of Biochemistry, University of Kansas, Lawrence, KS 66045

Abstmct: **Hydrolytic procedures for selective 2-debenzoylation and 2,4dideacylation of 2-O** tert-butyldimethylsilyl-7-O-(triethylsilyl)taxol are reported. The first synthesis and biologica evaluation of a 4-substituted analogue, 4-deacetyl-4-isobutanoyltaxol, is presented. The **chemistry described in this letter is suitable for the facile synthesis of tax01 congeners modified at C-2 and/or C-4.**

The clinical efficacy,¹ chemistry² and structure-activity relationships^{3,4} of the anticancer drug taxol (1) **isolated from the western yew, Tarus** *brevifoliu,5* **have been studied extensively in recent years. Most structureactivity relationships studies have focused on the synthesis and biology of C-13 phenylisoserine side chain analogues.3*4*6 However, more recently a number of reports have appeared, detailing the effects of structural** alterations on the diterpene moiety of taxol on biological activity.^{3,4,6} These studies revealed that modification at the southern part of the taxol molecule (C-1 to C-5) typically effect the biological activity more than alterations at the northern part $(C-6)$ to $C-12$).^{3,4,6}

In this letter we are reporting synthetic strategy for the preparation of 2-modified analogues which is superior to a recently reported method⁷ for the selective 2-debenzoylation of silyl protected taxol.^{8,9} In addition, we are detailing the synthesis and biological activity of the first 4-substituted taxol analogue, 4deacetyl-4-isobutanoyltaxol (11).

In a continuation of our studies on the selective hydrolysis of baccatin III derivatives,9 we have found that 2'-O-tert-butyldimethylsilyl-7-O-(triethylsilyl)taxol (2a) can be selectively hydrolysed with anhydrous KOH ¹⁰ to vield the corresponding 2-debenzoyl- and 2,4-dideacyltaxol derivatives 3a and 6, respectively **(Scheme).** When analogue 2a was treated with 1.2 equiv of anhydrous KOH at -15 °C for 24 h, 2**debenzoyltaxol3a was obtained in 70-80% yield (Scheme). Utilization of 4 equivalents of anhydrous KOH at** -20 °C for 72 h **(Scheme)** gave 75% of 4-deacetyl-2-debenzoyl-2'-O-tert-butyldimethylsilyl-7-O-**(triethylsilyl)taxol(6).**

The starting material (2a) for the synthesis of these derivatives is either generated by silyl protection of tax01 (Scheme) or semisynthetically by reacting 7-0-(triethylsilyl)baccatin III with the appropriate optically active N-benzoyl **ß-lactam.¹¹** The silyl protecting group at the 7-hydroxyl group in 2a is needed to avoid the well known base induced epimerization at C-7.¹² The rationale for our choice of protecting group at 2' is the **generation of steric hindrance at the C-13 ester group, thereby avoiding its hydrolysis. Previous studies on tax01 and baccatin 11113 had demonstrated that mild methanolysis results in the hydrolysis of the esters at C-10 and C-**13.^{5,14} The choice of placing a *tert*-butyldimethylsilyl protecting group at the 2' hydroxyl turned out to be of

critical importance for the success of our reactions. For example, submitting 2'.7-O-bis(triethylsilyl)taxol (2e) **to the same reaetion conditions led to a mixture of hydrolysis products, including C-13 side chain cleaved** derivatives.⁷ Our earlier studies⁹ with baccatin III derivatives had demonstrated that the 2-benzoate group could **bs selectively hydrolysed with tert-BuOK while retaining the esters at C-10 and C-4. We believe that the** selective 2-benzoate hydrolysis of taxol and baccatin III derivatives is facilitated by assistance of the neighboring C-1 hydroxyl. Debenzoylation of 2a was also achieved with *tert*-BuOK at -15 °C for 72 h. The addition of H₂O (formation of anhydrous KOH) enhanced the reaction rate (24 h instead of 72 h). Yields and product distribution were similar under both reaction conditions. In addition to 2-debenzoyl derivative 3a (70-**80% yield), we also isolated about 15% 2,4dideacyl derivative 6. The dacetate seems to be cleaved only in the absence of the 2-benzoate, suggesting assistance in its hydrolysis from the 2-hydroxyl. It is of interest to note** that the analogous 2-debenzoylation of 10-acetyl-2'-O-(tert-butyldimethylsilyl)taxotere (2b) gave 85-89% yield of 3b. No formation of 2,4-dideacylated product was observed. Standard acylation of 3a with DCC/DMAP and 4-chlorobenzoic acid in toluene at 55 °C, followed by silyl deprotection gave 2-(4-chlorobenzoyl)-2debenzoyltaxol (5) in 65% overall yield.

Since 2,4-dideacyl derivative 6 was observed as a byproduct in the 2-debenzoylation reaction, we explored whether 6 could be obtained as the major product by a change of reaction conditions. We found that using 2-3 equivalents of anhydrous KOH at -20 °C for 72 h in the hydrolysis reaction gave 75% of 4-deacetyl-2debenzoyl-2'-*O-tert*-butyldimethylsilyl-7-*O*-(triethylsilyl)taxol (6).

We then investigated the conversion of derivative 6 to 4-acetyl modified taxol analogue 11 (Scheme). As precedented in recent taxol total syntheses, $15,16$ the introduction of the acetyl group at the sterically encumbered 4-hydroxy group of baccatin III derivatives is possible after formation of a 1,2 cyclic carbonate. Thus, reaction of 6 with 1,1'-carbonyldiimidazole provided cyclic carbonate 7, which was acylated at the C-4 **hydroxyl group using isobutyric anhydrlde and DMAP to form acylated derivative 8 in 67% yield. Regioselective opening of the carbonate in 8 with PhLi (formation of 9 and 10) followed by silyl deprotection** led to 4-deacetyl-4-isobutanoyltaxol (11) in 46% and $4,10$ -dideacetyl-4-isobutanoyltaxol (12) in 18% yield.¹⁷ It **is noteworthy that treatment of 8 with PhLi was relatively selective and did not lead to a significant amount of** undesired hydrolysis products. Thus, we have demonstrated for the first time that the conversion of the 1,2cyclic carbonate with PhLi to its 2-benzoate analogue can be achieved in the presence of the C-13 phenylisoserine side chain.

Derivatives 5 and 11 were investigated for their ability to stimulate the assembly of microtubules and for **their cytotoxicity against B16 melanoma cells (Table). Derivative 5 was found to be slightly more active**

compound	microtubule assembly ^b ED50/ED50(taxol)	B16 melanoma cytotoxicity ^b ED ₅₀ /ED ₅₀ (taxol)
		LO.
	0.79	
	2.6	

Table. In vitro biological evaluation of taxol analogues 5 and 11.⁸

aFor experimental procedures see ref. 18. b Data reported relative to taxo $1 = 1.0$.

(a) i. Imi~le (15 equiv). TBSCl(15 equiv), DMP, rt, 12 h, quant ii. TESCl(l0 equiv), pyridine, rt, 12 h: 2a, 90% (b) tert-BuOK (1.4 equiv), H20 (1.2 equiv), THF, -40 to -15 "C, 24 h: 3a. 70-8046, 3b, 85-89%. (c) DMAP (12 equiv), DCC (12 equiv), 4-chlorobenzoic acid (12 equiv), toluene, 55 °C, 6 h. (d) Pyridinium hydrofluoxide, p hydrofluoride, pyridine, 0 °C to rt, 4-6 h: 5, 65% (from 3a); 11, 48% (from 8); 12, 18% (from 8). (e) *tert*-BuOK
(2.4 equiv), H₂O (2.2 equiv), THF, -40 to -20 °C, 48 h, then *tert*-BuOK (1.2 equiv), H₂O (1.1 equiv), T (2.2 equity) , THF, $-40 \text{ to } -20 \text{ °C}$, 48 h , then tert-BuOK (1.2 equity) , $H_2O(1.1 \text{ equity})$, THF, -40 m to -20 °C, 24 h: 6a, 75%. (f) CDI (20 equiv), THF, 55 °C, 6 h: 7, 87%. (g) Isobutyric anhydride (20 equiv), **DMAP (20 cquiv), CH2Cl2, rt, 48 h: 8.67%. (h) PhLi (10 equiv), 'IMP, -78 C!, 10 min.**

than tax01 in the microtubule assembly assay. However, compound 5 was about three times less cytotoxic against B16 melanoma cells, suggesting that the reduced activity is due to a difference in uptake and/or metabolism.¹⁹ The 4-isobutyric derivative 11 was less active than taxol in both assays (Table).

In conclusion, we have developed efficient methodology for the hydrolysis of taxol derivative 2a to its 2**debenxoyl and 2,4-dideacyl analogues 3a and 6, respectively. 20 The availability of these products will allow the** investigation of structure-activity relationships of C-2 and C-4 modified taxol analogues. An efficient synthetic **pathway was devised, suitable for the convergent synthesis of C-4 analogues of taxol.**

Acknowledgements: We gratefully acknowledge financial support from the National Institutes of Health (CA55141 and CA55160). Support is also acknowledged from the Scientific Education Partnership of Muion *Merrell Dow* **for a postdoctoral fellowship awarded T. C. Boge and from the Kansas Health Foundation for a postdoctoral fellowships awarded to S. M. Ah. The Danish Research Academy (S930093) and Familien Hede Nielsens Fond are gratefully acknowledged for grants to L. Falborg. Tax01 and a mixture of tax01 and cephalomannine was provided to us for these studies by the National Cancer Institute.**

References and Notes

- (1) For several reviews on the clinical activity of taxol see: **WorkshoP.** Paclitaxel (Taxol^{uy}) Investigator's **20,160. Proceedings of a Johns Hopkins Oncology Center Workshop. Semin. Oncol. Suppl. 3, 1993,**
- (2) For review: Kingston, D. G. I.; Molinero, A. A.; Rimoldi, J. M. In Progress in the Chemistry of Organic *Nuhval Products;* **Hen, W., Kirby, G. W.. Moore, R. E., Stegliih, W.** , **Tamm, C., Ed.; Springer: New York, 1993: Vol. 61: pp l-206.**
- (3) **For review: Suffness. M.** *Annu. Rep. Med.* **Chem. 1993.2%. 305-314.**
- (4) **For review: Hepperle, M.; Georg, G. I.** *Drugs* **Fufure 1994.19.573-584.**
- (5) Wani, M. C.; Taylor, H. L.; Wall, M. E.; Coggon, P.; McPhail, A. T. *J. Am. Chem. Soc.* 1971, 93, 2325 **2327.**
- (6) **For review: Georg. G. I.; Boge, T. C.; Cheruvallath,** *Z. S.; Glowers,* **J. S.; Harriman, G. C. B.; Hepperle, M.; Park, H. In** *Taxol: Science* and *Appficutions; Suffness, M., Ed.;* **CRC: Boca Raton, FL, 1994; (in press).**
- (7) **Chaudhary, A. G.; Gharpure, M. M.; Rimoldi. J. M.; Chordia, M. D.; Gunatilaks, A. A. L.; Kingston, D. G. I.: Grover, S.: Lin, C. M.: Hamel. E. J. Am.** *Chem. Sot.* **1994,116,4097-4098.**
- (8) **For the selective 2-debenzoylation of baccatin III derivatives see: Chen, S-H.; Farina, V.; Wei, J.-M.;** Long, B.; Fairchild, C.; Mamber, S. W.; Kadow, J. F.; Vyas, D.; Doyle, T. W. *Bioorg. Med. Chem. Lett.* **1994,4.479-482.**
- (9) For the selective 2-debenzoylation of baccatin III derivatives see: Datta, A.; Jayasinghe, L. R.; Georg, G. **I. J. Org.** *Chem. 1994,59,4689-4690.*
- $\begin{array}{c} (10) \\ (11) \end{array}$ **Gassman, P. G.; Schenk, W. N. J. Org. Chem. 1977,42,918-920.**
- **Georg, G. I.; Cheruvallath, Z. S.; Harriman, G. C. B.; Hepperle, M.; Park, H.** *Bioorg. Med. Chem. Lerc. 1993,3,2467-2470.*
- (12) **Miller, R. W.: Powell, R. G.: Smith, C. R, Jr.: Arnold, E.: Clardy. J. J. Org.** *Chem.* **19gl,46, 1469- 1474. For reviews see references 6 and 14.**
- (13) Baccatin III is the diterpene part of the taxol molecule without the C-13 side chain.
- (14) **Kingston, D. G. I.** *Phurmucof. Ther.* **1991.52, l-34.**
- **(15) Holton, R. A.: Kim, H.-B.; Somoza, C.; Liang, F.; Biediger, R. J.; Boatman, P. D.; Shindo, M.; Smith, C. C.; Kim, S.; Nadixadeh, H.; Suzuki, Y.; Tao, C.; Vu, P.; Tang, S.;** *Zhang,* **P.; Murthi, K. K.; Gentile, L. N.; Liu, J. H. J. Am. Chem. Sot. 1994,116, 15991600.**
- **(16) Nicolaou, K. C.; Yang, Z.; Liu, J. J.; Ueno, H.; Nantennet, P. G.; Guy, R.** *K.;* **Claibome. C. F.; Renaud, J.; Couladouros, E. A.; Paulvannan, K.; Sorensen, E. J.** *Nature* **1994,367,63@634.**
- **(17) A similsr synthetic sequence was recently reported for the synthesis of 4deacetoxytaxol: Chordia, M. D.: Choudhary, A. G.; Kingston, D. G. I.** *Absfructs of Pupers,* **208th National Meeting of the American**
- **(18) Chemical Society, Washir ngton, DC American Chemical Society: Washington, DC, 1994; MBDI 54. Georg, G. I.; Cheruvallath, Z. S.; Himes, R. H.; Mejillano, M. R.; Burke, C. T. J.** *Med. Chem. 1992,35, 4230-4237.*
- **(19) Compound 5 also displayed reduced cytotoxicity in comparison to tax01 against P388 murine leukemia** cells and HL60 human leukemia cells. See reference 7.
- **(20)** All newly prepared compounds displayed spectroscopic properties in agreement with their structures. Yields are unoptimized.

(Received in USA 12 September **1994;** *accepted 3 October* **1994)**